import wandb
with wandb.init(project="my-models") as run:
    # Train your model
    model = train_model()
    
    # Create an artifact for the model
    model_artifact = wandb.Artifact(
        name="my-model",
        type="model",
        description="ResNet-50 trained on ImageNet subset",
        metadata={
            "architecture": "ResNet-50",
            "dataset": "ImageNet-1K",
            "accuracy": 0.95
        }
    )
    
    # Add model files to the artifact
    model_artifact.add_file("model.pt")
    model_artifact.add_dir("model_configs/")
    
    # Log the artifact to W&B
    run.log_artifact(model_artifact)